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Abstract: The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual
and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme
conditions of hot summer temperature and prolonged drought. The ongoing fires created poor
air quality in the region containing most of Alaska’s population, leading to substantial impacts to
public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main
goals are to place the 2019 season into historical context, provide an attribution analysis, and assess
future changes in wildfire risk in the region. The primary tools are meteorological observations and
climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in
Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period.
The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not
yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal
will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of
enhanced precipitation in the trend towards increased fire risk.

Keywords: boreal forest; wildland fire; climate change; drought; PM2.5; Buildup Index; SPEI;
RCP 8.5; LENS; temperature; precipitation

1. Introduction

The late-season extreme fire activity in Southcentral Alaska during 2019 was highly
unusual and consequential. Alaska’s fire season typically starts with lightning in June and
ends by late July as seasonal rains arrive [1]. In 2019, a prolonged drought and several high
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wind events lengthened the fire season in Southcentral Alaska, driving extreme fire activity
in the existing Swan Lake Fire (Figure 1) as well as enabling new ignitions beginning
August 17. The McKinley Fire in the Susitna Valley north of Anchorage also started in mid-
August. Regional average August climatic anomalies from station observations within the
Kenai Peninsula and Susitna Valley Predictive Service Areas were +4.1 ◦C and −126.5 mm
for temperature and precipitation, respectively.
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Figure 1. Major burn areas of 2019 in southern Alaska. Inset shows PSA (Predictive Service Areas) boundaries and the
analysis domain used for the gridded data.

The lightning-ignited Swan Lake Fire located in the Kenai Peninsula started on 5 June
2019 and grew under high temperatures from mid-June through mid-July (Figure 2). The
prolonged drought and several high wind events in mid-August drove extreme fire activity
in the existing Swan Lake Fire and contributed to several new ignitions. Farther north
in the Susitna Valley, the McKinley Fire started near the Parks Highway on 17 August
2019 when sparks from a downed power line spread rapidly in strong northerly winds
with relative humidity less than 20%. The rapid spread was exacerbated by vegetation
that was unusually dry after a summer of positive temperature and negative precipitation
anomalies [2].

The McKinley Fire forced evacuations and destroyed 52 homes, 84 outbuildings, and 3
businesses [3]. Major highway closures disrupted tourism-dependent livelihoods (Figure 3,
left panel), with some small businesses (e.g., tourism, gas stations, eateries) in the vicinity
of Swan Lake Fire losing up to 20% of their seasonal revenues [4]. The strong winds were
the result of the unseasonably strong high pressure across northern Alaska and broad low
pressure over the Gulf of Alaska. The Alaska Department of Natural Resources had to
extend firefighting operations in 2019 by a month due to the extreme conditions that were
surpassed only by the 2004 fire season. The drought created dry deep organic fuel layers,
and some fires burned deep enough to leave ash pits, a phenomenon rarely seen before
in Alaska. Ash pits are very difficult to see and resulted in numerous serious burns to
firefighters [5].
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Figure 2. Progression of the Swan Lake Fire. Colors correspond to the date of the detection of fire 
from the VIIRS (S-NPP) I-Band 375 m active fire product between June and September 2019. Ar-
rows indicate the direction of fire spread. 
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The ongoing fires created poor air quality (Figure 3) throughout the region contain-
ing over 60 percent (460,000) of Alaska’s population, and both the high concentration of 
pollutants and the unprecedented number of days with poor air quality caused substan-
tial impacts to public health. In Anchorage, nearly one-third (32.6%) of the days during 
June−August had 24-h levels of fine particulate matter (particulate matter 2.5 µm or less, 
or PM2.5) considered at least moderately unhealthy for the general population, based on 

Figure 2. Progression of the Swan Lake Fire. Colors correspond to the date of the detection of fire
from the VIIRS (S-NPP) I-Band 375 m active fire product between June and September 2019. Arrows
indicate the direction of fire spread.
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Figure 3. (Left panel) Southcentral highway conditions in 2019 during fires (photo credit: Alaska
Division of Forestry/Shutterstock). (Right panel) Reduced air quality in August 2019 as viewed
from the campus of the University of Alaska Anchorage (photo credit: Micah Hahn).

The ongoing fires created poor air quality (Figure 3) throughout the region containing
over 60 percent (460,000) of Alaska’s population, and both the high concentration of
pollutants and the unprecedented number of days with poor air quality caused substantial
impacts to public health. In Anchorage, nearly one-third (32.6%) of the days during
June−August had 24-h levels of fine particulate matter (particulate matter 2.5 µm or less, or
PM2.5) considered at least moderately unhealthy for the general population, based on the
Environmental Protection Agency’s National Air Quality Index. Daily PM2.5 concentration
first peaked at the end of June, followed by a larger peak at the end of August (Figure 4),
and the three-month average was 156.9 percent higher than the previous 10-year average
over the same summer period. PM2.5 originating from wildfire smoke during the 2019 and
previous fire seasons in Alaska was associated with an increase in emergency department
visits for asthma and heart failure, with pronounced effects among Alaska Natives [6].

In addition to public health effects, costs to the 2019 economy included suppression
expenditures, infrastructure losses, and disruption from transportation closures and evac-
uation orders. Suppression costs for the two largest fires totaled $43 million for Swan
Lake [7] and $15 million for the McKinley Fire [8], not counting local response. The total
suppression costs for the 2019 season in Southcentral Alaska was $70 million [8]. The
Swan Lake Fire burned a major electric power transmission line [9], costing utilities and
customers an estimated $10.4 million [10].
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Climate is an important driver of fires in Alaska. The magnitude and extremes of
historical Alaska fire seasons have been shown to be linked with broader modes of climate
variability [11–14] however, most work has largely focused on the Interior where fires are
most prevalent. Southcentral Alaska and Kenai Peninsula boreal forests differ from Interior
Alaska in that insect outbreaks and invasive species are tied to fire activity, and drought
stress has not been common [15]. The annual temperature for all of Alaska has warmed
between 1976 and 2016 by 0.3 ◦C per decade [16] but there is a large gradient in trend
magnitudes between northernmost and southern Alaska. Regional warming trends are
largest on the North Slope of Alaska and decrease southward [17] and are largest in the
cooler months. Southcentral Alaska which is located in the Cook Inlet climate division [1]
has June–August trends over the 1949–2019 period of 1.2 ◦C (mean = 10 ◦C) for temperature
and −30.7 mm (mean = 320.3 mm) for precipitation. Temperature trends are similar for
the Central Interior climate division (1.6 ◦C, mean = 12.5 ◦C) but of opposite sign for
precipitation (+7.5 mm, mean = 191 mm) (updated from [17]). The Cook Inlet climate
division is cooler and wetter in summer than the Central Interior climate division. The
anthropogenic signal has already emerged in Interior Alaska based on an attribution study
of 2015 fires [18] and we hypothesize that the anthropogenic signal is just starting to emerge
in Southcentral Alaska, where the mean summer climate is cooler and wetter. In 2019,
the Cook Inlet climate division July–September temperature was ranked warmest while
June–August precipitation was ranked driest (Figure 5) over the 1925–2019 period. The
unprecedented persistent warm temperatures and dry conditions in Southcentral Alaska
in 2019 set the stage for the extreme late fire season.
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The extreme seasonal climate, large economic costs, and societal consequences of the
2019 Southcentral Alaska fire motivates investigating the following questions:

• How did the climate conditions of 2019 in Southcentral Alaska vary intraseasonally in
comparison with previous years from the observational record?

• Do we expect more fire seasons in the future in Southcentral Alaska like 2019?
• What are the relative contributions of temperature and precipitation to future changes

of fire risk in Southcentral Alaska?

Section 2 describes the data and methods while Section 3 documents the events of 2019
in the historical observational setting, presents attribution and future projection analysis.
Section 4 provides a discussion of these analyses and Section 5 contains the conclusions.

2. Data and Methods
2.1. Data

Observations at the Predictive Service Area (PSA) level for temperature and precipita-
tion are based on station data from the Alaska Fire and Fuels (AKFF) website maintained
by Mesowest (https://akff.mesowest.org/), an online cooperative data provider [19]. The
AKFF database includes both National Weather Service stations and remote automatic
weather stations (RAWS and USArray), which provide high-quality station data throughout
the summer to monitor fire-relevant parameters.

The European Center Reanalysis version 5 (ERA5) [20] was used to represent ob-
servations because the drought measure SPEI (see Section 2.2 for definition) requires a
long-term, consistent reference data set not available at many stations in the region [21].
ERA5 performs well in the Arctic [22] with fewer heterogeneities than station data for
precipitation in Alaska [23]. The gridded ERA5 and climate model output (see below)
were analyzed over a region bounded by 58–63◦ N and 144–157◦ W in order to represent
the region south of the Alaska Range that included most of the PSAs of interest while
excluding the mountains in the gridded data sets. Within this domain (red box, Figure 1
inset) land grid points (minimum 80% land) that are at or below 800 m in elevation were
averaged to construct indices from gridded reanalysis and model data.

The role of anthropogenic climate change was quantified by using SPEI calculated
from a climate model, the Community Earth System Model (CESM), for which a large
ensemble (39 members were employed in this study) of simulations is available. The
CESM model ranks among the top models representing temperature and precipitation in
Alaska [24]. Comparisons of CESM and ERA5 depictions of temperature and precipitation
from 1979 to 2019 for this study’s domain are included in Section 3. The use of a large
ensemble from a single, widely used climate model offers the best means for assessing
internal variability. A similar single-model strategy has been applied in the attribution of
fire risk in Canada [25].

2.2. Methods

The key drivers of wildfire potential used in this attribution are monthly June–August
temperature and precipitation, which are combined into the Standardized Precipitation
Evapotranspiration Index (SPEI). SPEI is a measure of surface wetness/dryness defined
as a normalization of precipitation minus potential evapotranspiration (PET) [26]. The
normalization procedure produces a departure (in standard deviations) from the climato-
logical mean for the location and calendar month. The SPEI was evaluated as a measure of
fire danger using monthly accumulated precipitation and PET; cumulative June–August
SPEI were constructed by summing 1-monthly values.

The monthly PETs were calculated using the Thornthwaite approach [27]. The Thorn-
thwaite method was used over a more physical model like Penman−Monteith because of a
lack of quality surface wind and solar radiation data in Alaska. The monthly P-PET values
were normalized following the inverse normal approximation procedure in Vicente-Serrano
et al. [26] but using the nonparametric Tukey plotting position to determine the probability

https://akff.mesowest.org/
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positions of the data for simplicity [28], similar to the application for Evaporative Demand
Drought Index [29].

Each ensemble member of the CESM Large Ensemble [30] provided monthly historical
(1920–2005) and projected (2006–2100; RCP8.5) climate information. The 39 ensemble
members from 1920–2100 were analyzed for two 41-year periods, 1979–2019 and 2040–2080.
A 1000-year CESM-LENS preindustrial control simulation (PI) was randomly sampled,
with the condition that each year was included once, to obtain 39 preindustrial ensemble
members that were also 41 years in length. This provided a consistent framework to
compare preindustrial, present and future SPEI.

SPEI requires a base climatological period against which to normalize the index. For
ERA5 the observed 1979–2019 period was used. For a consistent comparison across the
CESM suite of simulations, an ensemble average of the PI CESM was used as the base
climatological period to normalize the 1920–2100 ensembles. The base climatological period
is created by ranking the values in each ensemble member and then averaging across same
ranks (i.e., the CESM-LENS rank 1 value is the average of the 39 rank 1 values) to construct
the CESM-LENS distribution.

While this study uses the SPEI index because it can be readily evaluated from the
monthly output available from the CESM simulations, an alternative metric of shorter-
term (daily) variations of wildfire susceptibility is the Buildup Index (BUI). The BUI is
computed from the 1300 (local time) air temperature, relative humidity, 24-hr accumulated
precipitation, and herbaceous stage. The Buildup Index (BUI), part of the Canadian Fire
Weather Index system was evaluated because it represents cumulative drying and potential
flammability [31] and is used operationally by fire management in Alaska.

3. Results
3.1. Historical Context

The summer of 2019 was characterized by abnormal warmth and dry conditions
in Southcentral Alaska. Station-based temperatures showed several departures from
the climatological (1981–2010) averages in both the Kenai Peninsula and Susitna PSAs
(Figure 6), in which the Swan Lake and McKinley Fires occurred, respectively. Daily
averaged temperatures from the AKFF database were more than 5–15 ◦C above normal
from mid-June through early July in both PSAs. During this period, Anchorage reached its
highest temperature ever recorded: 32 ◦C (90◦F) on July 4, while nearby stations located
farther from the coast reached even higher temperatures. Subsequent excursions of 5–10 ◦C
above normal occurred over a multiday period in mid-July and during the first two-
thirds of August. Figure 6 also shows that precipitation was well below normal over the
June–August period, with the only notable precipitation occurring in late July. Even after
several substantial rain events in September, the total warm-season (April–September)
precipitation was approximately 25% below normal.

Figure 7 shows the August BUI values for 1994–2019 computed using AKFF data for
the Kenai Peninsula and Susitna Valley PSAs. In both PSAs, the August values of the BUI
were the highest of the entire period. The only prior year with BUI values approaching
those of 2019 was 2004, in which the statewide total area burned by wildfire was the highest
on record. Figure 8 compares the daily BUI evolution of 2019 with that of other severe fire
years in Alaska based on the gridded ERA5 data. The daily BUI over our entire gridded
analysis domain had two major peaks, in early July and late August in 2019, corresponding
to the major growth periods of the Swan Lake and McKinley Fires. The evolution of
BUI throughout the season from ERA5 reanalysis corresponds well to the station-based
observations. While 2004 also had peaks with similar timing, the 2019 peaks were higher.
In fact, the late-July peak of the daily BUI in 2019 exceeded the daily values of the severe
fire years of 2004 and 2005, each of which had a larger statewide burn area than 2019.
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The extreme nature of the 2019 fire season is also apparent in the ERA5-based domain
averages of the seasonal and monthly temperature and precipitation, which form the
basis of the SPEI attribution analysis in the following section. As shown in Figure 9, the
domain-averaged temperature for the June–August (JJA) period was the highest while
the JJA-averaged precipitation was the lowest of the entire 1979–2019 period spanned
by the ERA5 reanalysis. Again, only 2004 comes close to matching the temperature and
precipitation departures of 2019. The corresponding SPEI values are shown in Figure 10,
where the SPEI values for the individual calendar months are color-coded. The 2019 SPEI
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deficits were large in each of the three summer months. Only four other years of the 41-year
period had negative SPEI anomalies in all three summer months, and the 3-month total
anomaly of 2019 was clearly the largest (of either sign) of the 41-year record.
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3.2. Attribution and Future Projections

Because air temperature and precipitation are the primary determinants of the SPEI,
we begin the attribution analysis by summarizing the CESM-LENS simulations of 2 m
air temperature and precipitation in comparison with ERA5 over the historical period.
Figure 11 shows the medians and ranges of the yearly June–August values of these vari-
ables over 1979–2019 for ERA5 (left column), the 41 CESM-LENS yearly values averaged
over all 39 ensemble members (second column), and the 41 × 39 CESM-LENS values for
all years of all ensemble members (third column). It is apparent that the CESM tends to
be cooler and drier than ERA5 over the historical period. The required bias-correction by
quantile-mapping is described below. It is also apparent from the middle two columns
of Figure 11 that the ensemble averaging narrows the range of CESM’s temperature and
precipitation, but that the full set of 41 × 39 yearly values provides a larger sample for
assessing frequencies of occurrence of extreme summers. Finally, column 4 of Figure 11
shows that CESM projects a future that is significantly warmer and wetter than the his-
torical period over the domain of the analysis. The CESM distributions of the ensemble
averages for 1979–2019 show no overlap with 2040–2080 in the case of temperature, and
only a very slight overlap in the case of precipitation (columns 2 and 4 of Figure 11). This
result is consistent with other studies of future trends in the Arctic, specifically with regard
to the greater strength and earlier emergence of the temperature signal compared to the
precipitation signal [32].
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Figure 11. Comparison of ERA5 and CESM temperature and precipitation for 1979–2019. Box and
whiskers shown for ERA5, CESM present ensemble average, and CESM present all ensembles for (a)
June–August averaged 2-m air temperature (◦C) and (b) June–August total precipitation (mm). The
plots show median values, second and third quartile ranges (boxes) and maximum/minimum values
(whisker limits).

Figure 12a,c shows the yearly range of summer temperature and precipitation over
the 1920–2100 period in the CESM-LENS ensemble, together with the ERA5 values for the
1979–2019 reference period. In this case, the summer temperature is plotted as the Summer
Warmth Index, defined as the sum of the monthly mean temperatures (◦C) above 0 ◦C. The
cool and dry biases of the CESM relative to ERA5 are again apparent over the 1979–2019
reference period. In order to use the CESM-LENS output in an attribution analysis keyed
to the ERA5 historical record, the distributions of ERA5 values were quantile-mapped to
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distributions of the CESM-LENS over the 1979–2019 reference period. In this way, the
changing likelihoods of the 2019 values can be determined from the CESM-LENS output
for the past and future decades, as shown in Figure 12b,d. Consistent with the historical
data-based summaries in Section 4, the probabilities of 2019’s summer temperature were
essentially zero prior to 2000, while the probabilities of precipitation as low as in 2019
were less than 5% in every decade from the 1920s onward. For the future, the probability
of summer temperatures as warm as 2019 increases dramatically in the mid-21st century,
reaching close to 100% by the 2080s. By contrast, the chances of a precipitation amount as
low as in 2019 become even smaller, reaching essentially zero by mid-century.
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Figure 12. CESM-LENS simulations of Summer Warmth Index (a) and Total Summer Precipitation
(c) over the period 1920–2100. Corresponding values from ERA5 for the period 1979–2019 are shown
before (red) and after (blue) adjustment by quantile-mapping. Probability of occurrence of the
value equivalent to the 2019 extreme value of the Summer Warmth Index (b) and Total Summer
Precipitation (d).

4. Discussion

The trends towards higher summer temperatures and increased summer precipitation
represent opposing influences on wildfire susceptibility in southern Alaska. The SPEI
discussed earlier provides a metric to integrate these opposing effects on surface wetness.
Therefore, SPEI values were computed from the monthly output of the CESM-LENS
simulations and the ERA5 reanalysis. In ERA5, the lowest cumulative SPEI for JJA for
the 1979–2019 period occurred in 2019 and is −5.02. The CESM ensemble-averages of the
41-year minima are −3.66 for the PI and −3.17 for 1979–2019, though by 2070 values closer
to 2019 ERA5 are reached in CESM (Figure 13). The CESM data were not bias-corrected
to the ERA5. Rather, CESM PI SPEIs were ranked and ensemble-averaged to construct
minimum SPEI that were used as the baseline for comparison to the 1979–19 and 2040–80
periods for calculating probabilities of exceedance. The averaged CESM PI simulation has
lower SPEI compared to CESM 1979–2019 (Figure 14) so there are few ensemble members
in which the present-day JJA values of the SPEI exceed the corresponding monthly PI
extremes (Table 1). However, the number of exceedances increases by 2040–2080 for JJA
SPEI for ensemble-average comparisons and is even higher when individual ensemble
members are considered. Exceedance probabilities for individual months are also shown
in Table 1 for reference, but the persistent three months of hot dry conditions were key
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for the observed extreme fire season. Since SPEI is a normalized index, the 1979–2019
distributions for ERA5 and CESM look very similar with the exception of the extreme low
ERA5 values and the higher ERA5 variability since ERA5 represents a single realization.
Ensemble-average distributions from CESM for JJA SPEI (Figure 14) highlight that the
CESM 1979–2019 is close but shifted slightly to the right of the PI distribution, whereas the
CESM 2040–2080 has shifted to the left of the PI. Figure 15 displays a box plot of SPEI for all
the ensemble members comprising 1979–2019 CESM. There are three ensemble members
that reach SPEI values lower than the PI ensemble average. The CESM climate’s internal
variability dominates over anthropogenic forcing until later in the century.

Land 2021, 10, x FOR PEER REVIEW 12 of 16 
 

reach SPEI values lower than the PI ensemble average. The CESM climate’s internal vari-
ability dominates over anthropogenic forcing until later in the century. 

 
Figure 13. CESM SPEI values spanning 1920–2100 from the historical and RCP 8.5 simulations of 
one LENS ensemble member. SPEI is unitless. 

 
Figure 14. Distribution CESM SPEI values based on all CESM ensemble members. Distributions 
are shown for the preindustrial (blue), present (1979–2019, red) and future (2040–2080, orange). 
Corresponding ERA5 distribution for 1979–2019 is shown by dotted red line. 

 
Figure 15. Median values, second and third quartile ranges (boxes), maximum and minimum val-
ues (whisker limits) for each CESM ensemble member. Dots are outlier values. Corresponding 
ranges for CESM ensemble averages over different time periods and for ERA5 shown using col-
ored boxes at right. 

Figure 13. CESM SPEI values spanning 1920–2100 from the historical and RCP 8.5 simulations of one LENS ensemble
member. SPEI is unitless.

Land 2021, 10, x FOR PEER REVIEW 12 of 16 
 

reach SPEI values lower than the PI ensemble average. The CESM climate’s internal vari-
ability dominates over anthropogenic forcing until later in the century. 

 
Figure 13. CESM SPEI values spanning 1920–2100 from the historical and RCP 8.5 simulations of 
one LENS ensemble member. SPEI is unitless. 

 
Figure 14. Distribution CESM SPEI values based on all CESM ensemble members. Distributions 
are shown for the preindustrial (blue), present (1979–2019, red) and future (2040–2080, orange). 
Corresponding ERA5 distribution for 1979–2019 is shown by dotted red line. 

 
Figure 15. Median values, second and third quartile ranges (boxes), maximum and minimum val-
ues (whisker limits) for each CESM ensemble member. Dots are outlier values. Corresponding 
ranges for CESM ensemble averages over different time periods and for ERA5 shown using col-
ored boxes at right. 

Figure 14. Distribution CESM SPEI values based on all CESM ensemble members. Distributions are shown for the
preindustrial (blue), present (1979–2019, red) and future (2040–2080, orange). Corresponding ERA5 distribution for
1979–2019 is shown by dotted red line.

Table 1. ERA5 2019 SPEI values for JJA (cumulative), and monthly from June–August. CESM PI
ensemble average lowest SPEI values for JJA cumulatively and individual months. The probability
of exceeding PI SPEI averaged for each ensemble for the periods 1979–2019 and 2040–2080 is shown
below. The range of probabilities among the 39 ensembles is shown in brackets.

ERA5 2019 CESM: PI CESM: 1979–2019 CESM: 2040–2080

Lowest SPEI
Average Probability of Exceedances of

CESM’s PI Extreme by Ensemble Members
(Range across Ensembles)

SPEI JJA −5.02 −3.66 0.44% (4.9–0%) 4.9% (17–0%)
SPEI June −1.52 −1.71 2.1% (7–0%) 13.2% (27–0%)
SPEI July −1.75 −1.59 1.9% (4.9–0%) 8.9% (12–0%)

SPEI August −1.75 −1.71 2.4% (5–0%) 6.5% (9.8–2.5%)
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The salient result in Table 1 is that the probabilities of exceedances of preindustrial
extremes of the SPEI increase later in the century, reaching 13.2% in June and 4.9% in
the summer season average, indicating that the wildfire risk will increase in the coming
decades. For June, the projected increase ranges among ensemble members from 0 to
27%, while the corresponding range for the summer season average is 0 to 17%. The
projected increases for July and August are 8.9% (range: 0–12%) and 6.5% (range: 2.5–9.8%),
respectively. It is noteworthy that the projected change dampens between June to August,
perhaps in the form on increased season-ending rains. These projected changes are all
substantially larger than the corresponding changes from the PI to the recent decades
(1979–2019), which are 0.5% for the summer average, 2.1% for June, 1.9% for July and
2.4% for August. The fact that the recent changes are positive but much smaller than the
projected future changes leads to the conclusion that the signal of anthropogenic forcing
is emergent but not yet a major contributor to the wildfire risk in Southcentral Alaska. In
contrast, Partain et al. [18] found that anthropogenic forcing has increased the risk of an
event like the 2015 Interior Alaska fire season by 34–64% in an attribution analysis using
BUI. Southcentral Alaska has climatologically cooler and wetter summers than Interior
Alaska (i.e., compare Cook Inlet to Central Interior climate divisions in [1]), therefore it is
not surprising that there is a weaker anthropogenic signal than in the Interior.

The future CESM SPEI values arise within the context of projected higher precipitation
and higher temperatures (Figures 11 and 12). Because the trends toward wetter and warmer
conditions favor opposing changes in the SPEI, the projected decrease in the SPEI with
more frequent negative extremes indicates that temperature rise is the more important
driver. A notable caveat of this analysis is the SPEI’s dependence on the formulation of PET.
PET estimates for Alaska can vary significantly with the choice of the PET formulation [33],
especially when temperature and precipitation trends push PET in opposite directions.

5. Conclusions

For the areas of Southcentral Alaska affected by the 2019 wildfires, the cumulative
June–August ERA5 SPEI was the lowest of the post-1979 period. The result was an unusu-
ally prolonged fire season with more than $70 million in suppression costs, unprecedented
degradation of air quality with largely unknown health impacts, and economic losses
including the disruption of tourism activities during the peak summer season. A com-
parison of climate model simulations of the preindustrial and present-day (1979–2019)
periods shows that anthropogenic forcing has not yet increased the likelihood, relative to
the preindustrial, of extremely low SPEI values and, by implication, the conditions favoring
the 2019 wildfires in Southcentral Alaska. However, the model results for future decades
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show an emergent signal of more frequent negative extremes of the SPEI and hence an
increased risk of severe wildfire years.

The projected changes presented here are based on a single-model ensemble under the
RCP 8.5 forcing scenario, which is at the high end of the emission scenarios used in the Fifth
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change [34]. Output
from this and other models used in AR5 shows that the changes projected for Alaska
under weaker forcing scenarios are qualitatively similar but quantitatively weaker than
under RCP 8.5 (e.g., [16], see also https://www.snap.uaf.edu/tools/community-charts).
The changes of temperature and precipitation projected for most locations in Alaska scale
almost linearly with the projected change in global temperature, which in turn varies
monotonically with the magnitude of the RCP forcing. While greenhouse gas emissions
have generally been following the RCP 8.5 scenario over the past decade, the projected
probabilities of exceedance reported here should be reduced accordingly if a weaker forcing
scenario is assumed.

This study provides a glimpse into a potential future with increased risk of late season
wildland fire in highly populated Southcentral Alaska, where 75% of Alaska’s 734,000
denizens live [35]. Wildland fire is a natural part of the boreal ecosystem so while fires can-
not be prevented, their impacts can be managed through diligent preparation to minimize
loss of property and lives. Studies like this can serve as evidence that community leaders
can use to incentivize residents to invest in developing fire-safe strategies such as removing
flammable items from around their homes and having an escape plan in increasingly
fire-prone areas. Increased communication with the public on fire-safe strategies is timely.
For example, a recent public service communication about the McKinley Fire demonstrates
the positive outcomes that resulted from fire-safe improvements [36]. The results obtained
here also serve to inform decision-support for managing firefighting resources. Specifically,
based on the projections that fire years like 2019 will become more common in the future,
managers must ensure that firefighters and equipment are available in southern Alaska
later in the season than previously.
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